向AI转型的程序员都关注公众号 机器学习AI算法工程
本篇文章将剪枝后的模型作为学生模型,剪枝前的模型作为教师模型对剪枝模型进行蒸馏,从而进一步提到轻量模型的性能。
Channel-wise Distillation (CWD)
问题和方法
在计算机视觉任务中,图像分类只需要预测整张图像的类别,而密集预测需要对每个像素或对象进行预测,输出更丰富的结果,如语义分割、目标检测等。直接应用分类任务中的知识蒸馏方法于密集预测任务效果不佳。已有的方法通过建模空间位置之间(指的是图像中的像素位置)的关系来传递结构化知识。
论文提出了一种通道级的知识蒸馏方法。主要分为两个步骤:
对特征图的每个通道进行softmax标准化,得到一个概率分布(表示了该通道中每个位置的相对重要性或响应强度)。
计算教师网络和学生网络相应通道概率分布之间的asymmetric KL散度作为损失,使学生网络在前景显著区域模仿教师网络。
具体实现
对特征图或logits的每个通道,对H×W个位置的激活值进行softmax计算,得到概率分布表示每个位置的相对重要性。
然后计算这个分布与教师网络中相应通道分布的asymmetric KL距离,重点对齐前景显著区域。
代码如下:
- class CWDLoss(nn.Module): """PyTorch version of `Channel-wise Distillation for Semantic Segmentation. <https://arxiv.org/abs/2011.13256>`_. """
- def __init__(self, channels_s, channels_t, tau=1.0): super(CWDLoss, self).__init__() self.tau = tau
- def forward(self, y_s, y_t): """Forward computation. Args: y_s (list): The student model prediction with shape (N, C, H, W) in list. y_t (list): The teacher model prediction with shape (N, C, H, W) in list. Return: torch.Tensor: The calculated loss value of all stages. """ assert len(y_s) == len(y_t) losses = []
- for idx, (s, t) in enumerate(zip(y_s, y_t)): assert s.shape == t.shape
- N, C, H, W = s.shape
- # normalize in channel diemension import torch.nn.functional as F softmax_pred_T = F.softmax(t.view(-1, W * H) / self.tau, dim=1) # [N*C, H*W]
- logsoftmax = torch.nn.LogSoftmax(dim=1) cost = torch.sum( softmax_pred_T * logsoftmax(t.view(-1, W * H) / self.tau) - softmax_pred_T * logsoftmax(s.view(-1, W * H) / self.tau)) * (self.tau ** 2)
- losses.append(cost / (C * N)) loss = sum(losses)
- return loss
问题和方法
知识蒸馏主要可以分为logit蒸馏和feature蒸馏。其中feature蒸馏具有更好的拓展性,已经在很多视觉任务中得到了应用。但由于不同任务的模型结构差异,许多feature蒸馏方法是针对某个特定任务设计的。
之前的知识蒸馏方法着力于使学生去模仿更强的教师的特征,以使学生特征具有更强的表征能力。我们认为提升学生的表征能力并不一定需要通过直接模仿教师实现。从这点出发,我们把模仿任务修改成了生成任务:让学生凭借自己较弱的特征去生成教师较强的特征。在蒸馏过程中,我们对学生特征进行了随机mask,强制学生仅用自己的部分特征去生成教师的所有特征,以提升学生的表征能力。
具体实现
对特征图或logits生成1×H×W的随机mask,广播到所有通道然后对特征图所有通道进行掩码操作,基于masked特征图输入生成网络,输出特征与教师特征图计算mse损失进行回归训练。
代码如下:
- class MGDLoss(nn.Module): def __init__(self, channels_s, channels_t, alpha_mgd=0.00002, lambda_mgd=0.65): super(MGDLoss, self).__init__() device = 'cuda' if torch.cuda.is_available() else 'cpu'
- self.alpha_mgd = alpha_mgd self.lambda_mgd = lambda_mgd
- self.generation = [ nn.Sequential( nn.Conv2d(channel_s, channel, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(channel, channel, kernel_size=3, padding=1)).to(device) for channel_s, channel in zip(channels_s, channels_t) ]
- def forward(self, y_s, y_t, layer=None): """Forward computation. Args: y_s (list): The student model prediction with shape (N, C, H, W) in list. y_t (list): The teacher model prediction with shape (N, C, H, W) in list. Return: torch.Tensor: The calculated loss value of all stages. """ assert len(y_s) == len(y_t) losses = [] for idx, (s, t) in enumerate(zip(y_s, y_t)): # print(s.shape) # print(t.shape) # assert s.shape == t.shape if layer == "outlayer": idx = -1 losses.append(self.get_dis_loss(s, t, idx) * self.alpha_mgd) loss = sum(losses) return loss
- def get_dis_loss(self, preds_S, preds_T, idx): loss_mse = nn.MSELoss(reduction='sum') N, C, H, W = preds_T.shape
- device = preds_S.device mat = torch.rand((N, 1, H, W)).to(device) mat = torch.where(mat > 1 - self.lambda_mgd, 0, 1).to(device)
- masked_fea = torch.mul(preds_S, mat) new_fea = self.generation[idx](masked_fea)
- dis_loss = loss_mse(new_fea, preds_T) / N
- return dis_loss
YOLOv8蒸馏
基于前一章所述的剪枝模型作为学生模型,剪枝前的模型作为教师模型
model_s = YOLO(weights="weights/prune.pt")model_t = YOLO(weights="weights/last.pt")
为了在训练过程中使用教师模型指导学生模型训练,我们首先修改接口,在train函数中传入教师模型和蒸馏损失类型。
self.yolo.train(data="diagram.yaml", Distillation=model_t.model, loss_type=loss_type, amp=False, imgsz=640, epochs=100, batch=20, device=0, workers=4, lr0=0.001)
同时修改ultralytics/engine/trainer.py-333行,读取Distillation参数和loss_type参数。
Args: cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG. overrides (dict, optional): Configuration overrides. Defaults to None.# 新增=======================================if overrides and "Distillation" in overrides: self.Distillation = overrides["Distillation"] overrides.pop("Distillation")else: self.Distillation = Noneif overrides and "loss_type" in overrides: self.loss_type = overrides['loss_type'] overrides.pop("loss_type")else: self.loss_type = 'None'# 新增=======================================self.args = get_cfg(cfg, overrides)
修改了接口处之后,在加载当前学生模型的时候,同时对教师模型进行处理。trainer.py修改481行
- def _setup_train(self, world_size): """Builds dataloaders and optimizer on correct rank process."""
- # Model self.run_callbacks("on_pretrain_routine_start") ckpt = self.setup_model() self.model = self.model.to(self.device) # 新增======================================= if self.Distillation is not None: # for k, v in self.Distillation.model.named_parameters(): # v.requires_grad = True self.Distillation = self.Distillation.to(self.device) # 新增======================================= self.set_model_attributes() ... ...
这里新增的注释部分是打开教师模型的梯度计算,但是一般我们不需要,然后将教师模型也移动到device上。
self.amp = bool(self.amp) # as boolean self.scaler = torch.cuda.amp.GradScaler(enabled=self.amp) if world_size > 1: self.model = nn.parallel.DistributedDataParallel(self.model, device_ids=[RANK], find_unused_parameters=True) # 新增======================================= if self.Distillation is not None: self.Distillation = nn.parallel.DistributedDataParallel(self.Distillation, device_ids=[RANK]) self.Distillation.eval() # 新增======================================= # Check imgsz
然后在_setup_train函数的521行进行分布式训练模型处理的时候,将教师模型做同样的处理。
然后是增加蒸馏损失,这一块我们可以添加到_do_train函数中。
if self.args.close_mosaic: base_idx = (self.epochs - self.args.close_mosaic) * nb self.plot_idx.extend([base_idx, base_idx + 1, base_idx + 2])# 新增=======================================if self.Distillation is not None: distillation_loss = Distillation_loss(self.model, self.Distillation, distiller=self.loss_type)epoch = self.start_epochself.optimizer.zero_grad() # zero any resumed gradients to ensure stability on train startwhile True: self.epoch = epoch self.run_callbacks("on_train_epoch_start")
这里Distillation_loss传入学生模型和教师模型,以及蒸馏损失的类型,该类实现如下:
- class Distillation_loss: def __init__(self, modeln, modelL, distiller="CWDLoss"): # model must be de-paralleled
- self.distiller = distiller # layers = ["2","4","6","8","12","15","18","21"] layers = ["6", "8", "12", "15", "18", "21"] # layers = ["15","18","21"]
- # get channels_s, channels_t from modelL and modeln channels_s = [] channels_t = [] for name, ml in modelL.named_modules(): if name is not None: name = name.split(".") if name[0] == "module": name.pop(0) if len(name) == 3: if name[1] in layers: if "cv2" in name[2]: channels_t.append(ml.conv.out_channels) for name, ml in modeln.named_modules(): if name is not None: name = name.split(".") if name[0] == "module": name.pop(0) if len(name) == 3: if name[1] in layers: if "cv2" in name[2]: channels_s.append(ml.conv.out_channels) nl = len(layers) channels_s = channels_s[-nl:] channels_t = channels_t[-nl:] self.D_loss_fn = FeatureLoss(channels_s=channels_s, channels_t=channels_t, distiller=distiller[:3])
- self.teacher_module_pairs = [] self.student_module_pairs = [] self.remove_handle = []
- for mname, ml in modelL.named_modules(): if mname is not None: name = mname.split(".") if name[0] == "module": name.pop(0) if len(name) == 3: if name[1] in layers: if "cv2" in mname: self.teacher_module_pairs.append(ml)
- for mname, ml in modeln.named_modules():
- if mname is not None: name = mname.split(".") if name[0] == "module": name.pop(0) if len(name) == 3: # print(mname) if name[1] in layers: if "cv2" in mname: self.student_module_pairs.append(ml)
- def register_hook(self): self.teacher_outputs = [] self.origin_outputs = []
- def make_layer_forward_hook(l): def forward_hook(m, input, output): l.append(output)
- return forward_hook
- for ml, ori in zip(self.teacher_module_pairs, self.student_module_pairs): # 为每层加入钩子,在进行Forward的时候会自动将每层的特征传送给model_outputs和origin_outputs self.remove_handle.append(ml.register_forward_hook(make_layer_forward_hook(self.teacher_outputs))) self.remove_handle.append(ori.register_forward_hook(make_layer_forward_hook(self.origin_outputs)))
- def get_loss(self): quant_loss = 0 # for index, (mo, fo) in enumerate(zip(self.teacher_outputs, self.origin_outputs)): # print(mo.shape,fo.shape) # quant_loss += self.D_loss_fn(mo, fo) quant_loss += self.D_loss_fn(y_t=self.teacher_outputs, y_s=self.origin_outputs) if self.distiller != 'cwd': quant_loss *= 0.3 self.teacher_outputs.clear() self.origin_outputs.clear() return quant_loss
- def remove_handle_(self): for rm in self.remove_handle: rm.remove()
这个类里面指定了一些要进行蒸馏的层,然后定义了一个注册每一层的钩子的函数,这样每一层前向传播完会得到所有层的特征,这些特征传入FeatureLoss类,进行特征损失计算。FeatureLoss类如下:
- class FeatureLoss(nn.Module): def __init__(self, channels_s, channels_t, distiller='mgd', loss_weight=1.0): super(FeatureLoss, self).__init__() self.loss_weight = loss_weight self.distiller = distiller
- device = 'cuda' if torch.cuda.is_available() else 'cpu' self.align_module = nn.ModuleList([ nn.Conv2d(channel, tea_channel, kernel_size=1, stride=1, padding=0).to(device) for channel, tea_channel in zip(channels_s, channels_t) ]) self.norm = [ nn.BatchNorm2d(tea_channel, affine=False).to(device) for tea_channel in channels_t ] self.norm1 = [ nn.BatchNorm2d(set_channel, affine=False).to(device) for set_channel in channels_s ]
- if distiller == 'mgd': self.feature_loss = MGDLoss(channels_s, channels_t) elif distiller == 'cwd': self.feature_loss = CWDLoss(channels_s, channels_t) else: raise NotImplementedError
- def forward(self, y_s, y_t): assert len(y_s) == len(y_t) tea_feats = [] stu_feats = []
- for idx, (s, t) in enumerate(zip(y_s, y_t)): if self.distiller == 'cwd': s = self.align_module[idx](s) s = self.norm[idx](s) else: s = self.norm1[idx](s) t = self.norm[idx](t) tea_feats.append(t) stu_feats.append(s)
- loss = self.feature_loss(stu_feats, tea_feats) return self.loss_weight * loss
上面DistillationLoss和FeatureLoss两个类呢我们单独放到trainer.py文件开头。
回到_do_train函数,在前面声明了distillation_loss实例之后,首先我们为教师模型和学生模型注册钩子函数,这个必须在模型调用之前,因此放在了for循环训练之前。
self.tloss = None# 新增=======================================if self.Distillation is not None: distillation_loss.register_hook()# 新增=======================================for i, batch in pbar: self.run_callbacks("on_train_batch_start") # Warmup
然后就是模型计算损失的部分,如下:
- self.tloss = ( (self.tloss * i + self.loss_items) / (i + 1) if self.tloss is not None else self.loss_items)# 新增=======================================if self.Distillation is not None: distill_weight = ((1 - math.cos(i * math.pi / len(self.train_loader))) / 2) * (0.1 - 1) + 1 with torch.no_grad(): pred = self.Distillation(batch['img'])
- self.d_loss = distillation_loss.get_loss() self.d_loss *= distill_weight if i == 0: print(self.d_loss, '-----------------') print(self.loss, '-----------------') self.loss += self.d_loss# 新增=======================================
这里呢,设置了蒸馏损失的权重,大致是下面的曲线。然后把蒸馏损失加到原损失上即可。注意,在教师模型推理的时候,用了with torch.no_grad()包装,因为不需要训练教师模型,也就不计算梯度,这样做可以减少显存消耗。
最后,模型train完一轮,需要把钩子函数给去掉,如下:
- if self.args.plots and ni in self.plot_idx: self.plot_training_samples(batch, ni)
- self.run_callbacks("on_train_batch_end")# 新增=======================================if self.Distillation is not None: distillation_loss.remove_handle_()self.lr = {f"lr/pg{ir}": x["lr"] for ir, x in enumerate(self.optimizer.param_groups)} # for loggersself.run_callbacks("on_train_epoch_end")
至此,所有要修改的地方都改完了。此时,使用如下语句训练即可
self.yolo.train(data="diagram.yaml", Distillation=model_t.model, loss_type=loss_type, amp=False, imgsz=640, epochs=100, batch=20, device=0, workers=4, lr0=0.001)
为了代码简洁方便,对稀疏训练、剪枝和蒸馏做了封装,形成如下类:
- import osfrom tqdm import tqdmfrom prune import prune_modelfrom relation import find_parent_nodes, visualize_nodes, metricfrom ultralytics import YOLO
-
- class PruneModel: def __init__(self, weights="weights/last.pt"): # Load a model self.yolo = YOLO(weights)
- def prune(self, factor=0.7, save_dir="weights/prune.pt"): prune_model(self.yolo, save_dir, factor)
- def train(self, save_dir="weights/retrain.pt"): self.yolo.train(data='diagram.yaml', Distillation=None, loss_type='None', amp=False, imgsz=640, epochs=50, batch=20, device=1, workers=4, name="default") self.yolo.save(save_dir)
- def sparse_train(self, save_dir='weight/sparse.pt'): self.yolo.train(data='diagram.yaml', Distillation=None, loss_type='sparse', amp=False, imgsz=640, epochs=50, batch=20, device=0, workers=4, name="sparse") self.yolo.save(save_dir)
- def distill(self, t_weight, loss_type='mgd', save_dir="weights/distill.pt"): model_t = YOLO(t_weight) self.yolo.train(data="diagram.yaml", Distillation=model_t.model, loss_type=loss_type, amp=False, imgsz=640, epochs=100, batch=20, device=0, workers=4, lr0=0.001) self.yolo.save(save_dir)
- def export(self, **kwargs): self.yolo.export(**kwargs)
- @staticmethod def compare(weights=None): # 统计压缩前后的参数量,精度,计算量 if weights is None: weights = [] results = [] for weight in weights: yolo = YOLO(weight) metric = yolo.val(data='diagram.yaml', imgsz=640) n_l, n_p, n_g, flops = yolo.info() acc = metric.box.map results.append((weight, n_l, n_p, n_g, flops, acc)) for weight, layer, n_p, n_g, flops, acc in results: print(f"Weight: {weight}, Acc: {acc}, Params: {n_p}, FLOPs: {flops}")
- def predict(self, source): results = self.yolo.predict(source)[0] nodes = results.boxes.xyxy nodes = nodes.tolist() ori_img = results.orig_img parent_nodes = find_parent_nodes(nodes) visualize_nodes(ori_img, nodes, parent_nodes)
- def evaluate(self, data_path): bboxes_list = [] pred_bboxes_list = [] parent_ids_list = [] pred_parent_ids_list = []
- imgs_path = os.path.join(data_path, "images/val") labels_path = os.path.join(data_path, "plabels/val")
- # 读取标注文件 for img in tqdm(os.listdir(imgs_path)): img_path = os.path.join(imgs_path, img)
- # 检查文件后缀并构建相应的标注文件路径 if img.endswith(".png"): label_path = os.path.join(labels_path, img.replace(".png", ".txt")) elif img.endswith(".webp"): label_path = os.path.join(labels_path, img.replace(".webp", ".txt")) else: continue
- with open(label_path, "r") as f: lines = f.readlines()
- results = self.yolo.predict(img_path)[0] pred_bboxes = results.boxes.xyxy pred_bboxes = pred_bboxes.tolist() pred_bboxes_list.append(pred_bboxes) pred_parent_ids = find_parent_nodes(pred_bboxes) pred_parent_ids_list.append(pred_parent_ids) ih, iw = results.orig_img.shape[:2] bboxes = [] parent_ids = [] for line in lines: line = line.strip().split() x, y, w, h, px, py, pw, ph, p = map(float, line[1:]) x1, y1, x2, y2 = int((x - w / 2) * iw), int((y - h / 2) * ih), int((x + w / 2) * iw), int( (y + h / 2) * ih) bboxes.append((x1, y1, x2, y2)) parent_ids.append(int(p)) bboxes_list.append(bboxes) parent_ids_list.append(parent_ids) precision, recall, f1_score = metric(bboxes_list, pred_bboxes_list, parent_ids_list, pred_parent_ids_list) print(f"Precision: {precision}") print(f"Recall: {recall}") print(f"F1 Score: {f1_score}")
- if __name__ == '__main__': model = PruneModel("weights/yolov8n.pt") model.sparse_train("weights/sparse.pt") model.prune(factor=0.2, save_dir="weights/prune.pt") model.train() model.distill("weights/sparse.pt", loss_type="mgd") model.evaluate("datasets/diagram") model.predict("datasets/diagram/images/val/0593.png")
机器学习算法AI大数据技术
搜索公众号添加: datanlp
长按图片,识别二维码
阅读过本文的人还看了以下文章:
整理开源的中文大语言模型,以规模较小、可私有化部署、训练成本较低的模型为主
基于40万表格数据集TableBank,用MaskRCNN做表格检测
《深度学习入门:基于Python的理论与实现》高清中文PDF+源码
2019最新《PyTorch自然语言处理》英、中文版PDF+源码
《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码
PyTorch深度学习快速实战入门《pytorch-handbook》
【下载】豆瓣评分8.1,《机器学习实战:基于Scikit-Learn和TensorFlow》
李沐大神开源《动手学深度学习》,加州伯克利深度学习(2019春)教材
【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类
如何利用全新的决策树集成级联结构gcForest做特征工程并打分?
Machine Learning Yearning 中文翻译稿
斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)
中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程
不断更新资源
深度学习、机器学习、数据分析、python
搜索公众号添加: datayx