向AI转型的程序员都关注了这个号👇👇👇
一、前言
MobileOne论文:https://arxiv.org/abs/2206.04040
MobileOne github:https://github.com/apple/ml-mobileone
二、基本原理
使用Reparameterize重参数化实现模型的轻量化,基本模块如下图所示。
三、改进方法
说明:该部分的改进代码尽可能地根据官方代码的写法与YOLOv7项目进行整合;
3.1 改进分析
通过阅读MobileOne源码和结合论文中Table2可以发现以下两点:
(1)Table2中Block Type全写为MobileOne Block,但在源码中的Stage1和后面的Block是稍有不同的,因此在3.2改进YOLOv7时中使用MobileOne Block和MobileOne进行区分;
(2)源码将Stage4和Stage5写在了一起,因此在换Backbone时我们也写在一起,因此在yaml中会看到Stage1后面Blocks个数为【2,8,10,1】
3.2 实现步骤
步骤一:构建MobileOneBlock、MobileOne、SEBlock、reparameterize模块
在项目文件中的models/common.py中加入以下代码
完成以上5步就可以正常开始训练和测试了~
四、预训练权重
该部分的与训练权重是在MobileOne官方的MobileOne-ms0的官方预训练权重,已兼容YOLOv7项目。
link:https://github.com/uniquechow/YOLO_series_doc/tree/main/lightweight/MobileOne
原文地址
https://blog.csdn.net/weixin_44994302/article/details/128156130
机器学习算法AI大数据技术
搜索公众号添加: datanlp
长按图片,识别二维码
阅读过本文的人还看了以下文章:
基于40万表格数据集TableBank,用MaskRCNN做表格检测
《深度学习入门:基于Python的理论与实现》高清中文PDF+源码
2019最新《PyTorch自然语言处理》英、中文版PDF+源码
《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码
PyTorch深度学习快速实战入门《pytorch-handbook》
【下载】豆瓣评分8.1,《机器学习实战:基于Scikit-Learn和TensorFlow》
李沐大神开源《动手学深度学习》,加州伯克利深度学习(2019春)教材
【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类
如何利用全新的决策树集成级联结构gcForest做特征工程并打分?
Machine Learning Yearning 中文翻译稿
斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)
中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程
不断更新资源
深度学习、机器学习、数据分析、python
搜索公众号添加: datayx